Oxy già Thái Lan 50% – H2O2 50% (Hydrogen Peroxide 50%)

In stock

Đóng gói Can/ Phuy/ Tank/ Xe bồn
Bảo quản Bảo quản ở nơi khô ráo, thoáng mát, tránh ánh sáng mặt trời trực tiếp.
Công thức hóa học H2O2

1. Hydrogen Peroxide 50% (Oxy già Thái Lan 50%) – H2O2 50% là gì?

Hydrogen Peroxide 50% là hóa chất đến từ Thái Lan có công thức là H2O2  hay với tên thường gọi oxy già Thái Lan, tên gọi quen thuộc là Oxy già 50. Đây là dung dịch trong suốt, không màu, là hoá chất thông dụng thuộc nhóm hóa chất ngành dệt nhuộm với khả năng khử trùng, tẩy trắng, tẩy uế.

Hydrogen Peroxide 50% (Oxy già 50%) – H2O2 có rất nhiều ứng dụng trong đời sống, công nghiệp, ví dụ như trong ngành xử lí nước, ngành giấy – bao bì, y tế,…

2. Tính chất của Hydrogen Peroxide 50% (Oxy già Thái Lan 50%) – H2O2 50%

  • Oxy già Thái Lan H2O2 là dung dịch không màu, có mùi gắt đặc trưng, nhớt hơn nước.
  • H2Ocó tính oxy hoá mạnh.
  • Có khả năng tan hoàn toàn trong nước.
  • Khối lượng riêng: 1,45 g/cm3.
  • Khối lượng mol: 34,01 g/mol.
  • Nhiệt độ sôi: 108 °C.
  • Nhiệt độ nóng chảy: 33 °C.
  • Độ nhớt: 1,245 cP ở 20 °C.
  • Độ pH: Axit (2,5 – 3,5).

3. Ứng dụng của Hydrogen Peroxide 50% ( oxy già thái lan 50%) – H2O2 50%

a. Ứng dụng oxy già thái lan trong công nghiệp hoá chất dệt nhuộm

Oxy già 50% tham gia quá trình sản xuất Natri Percacbonat và Natri Perbonat, đây là hai thành phần tẩy trắng trong bột giặt.

  • H2O2 dùng làm chất oxy hoá tẩy trắng cho vải, làm sạch màu vải, tách các vết bẩn liên quan đến dầu mỡ.

b. Ứng dụng oxy già thái lan trong công nghiệp xử lí nước thải

Công nghệ Fenton có gì đặc biệt?

Fenton được biết đến như một phương pháp công nghệ dùng để oxy hóa các chất hữu cơ khó phân hủy sinh học, ngoài ra còn có khả năng khử màu hiệu quả. Công nghệ có phạm vi ứng dụng rộng, Fenton sử dụng ion sắt như chất xúc tác  oxy già Thái Lan (H2O2), tạo ra các gốc tự do có khả năng oxy cao để oxy hóa các chất hữu cơ (quá trình oxy hóa hóa học). Chính vì vậy, Fenton thường được sử dụng với mục đích xử lý nước thải dệt nhuộm, nước thải giấy, nước thải rỉ rác và các loại nước thải có độ màu cao.

Quy trình của công nghệ Fenton trong quá trình xử lý nước thải

  •  Điều chỉnh độ pH

Độ pH có ảnh hưởng rất nhanh đến tốc độ phản ứng cùng nồng độ Fe2+. Thông thường, nồng độ pH từ 2 – 4 sẽ phù hợp để đẩy nhanh quá trình phân hủy các chất hữu cơ. Nếu dùng thêm các chất xúc tác như quặng sắt, cát chứa sắt, Goethite (a-FeOOH), hoặc sắt mang Fe/SiO2, Fe/TiO2, Fe/Zeolit, Fe/than hoạt tính,… được gọi là Fenton dị thể, thì nồng độ pH thích hợp ở giai đoạn này sẽ dao động trong khoảng 5 – 9.

  • Phản ứng oxy hóa

Phản ứng Fenton là quá trình hình thành các gốc OH hoạt tính và phản ứng oxy hóa chất hữu cơ, bao gồm:

Fe2+ + H2O2 => Fe3+ + OH + OH-

Sau khi được hình thành, gốc OH sẽ tham gia quá trình phân hủy các chất hữu cơ, khiến các chất hữu cơ phân tử cao chuyển thành các chất hữu cơ phân tử thấp:

CHC (cao phân tử) + HO => CHC (thấp phân tử) + CO2 + H2O + OH-

  • Trung hòa và keo tụ

Để quá trình trung hòa – keo tụ diễn ra thuận lợi, nồng độ pH cần được nâng để > 7 nhằm tạo kết tủa Fe3+ bằng phản ứng sau:

Fe3+ + 3OH => Fe(OH)3

Theo đó, Fe(OH)3 tham gia cơ chế keo tụ, đông tụ, hấp phụ một phần chất hữu cơ chủ yếu là từ các chất hữu cơ cao phân tử.

  • Quá trình tụ lắng

– Lắng là quá trình làm giảm hàm lượng COD cùng độ mùi, độ màu trong nguồn nước thải với sự tham gia của các bông keo hình thành trước đó. Cuối cùng, các chất hữu cơ còn lại sẽ được xử lý bằng phương pháp sinh học và những phương pháp khác. Cơ chế tạo thành gốc hydroxyl gồm:

Phản ứng giữa H2O2 và chất xúc tác Fe2+

– Fenton là cơ chế phản ứng gây nhiều tranh cãi, Fenton cổ điển bao gồm các ion sắt hóa trị 2 và hydro peroxit H2Otác dụng trực tiếp với nhau sinh ra gốc OH, Fe2+ bị oxy hóa thành Fe3+ theo phản ứng:

Fe2+ + H2O2 => Fe3+ + OH + OH-

Các yếu tố có ảnh hưởng đến phản ứng Fenton :

  • Ảnh hưởng của nồng độ sắt: Nếu không có sắt, sẽ không có sự hình thành gốc hydroxyl. Ví dụ, khi thêm H2O2 50% vào nước thải có tính phenol (lúc này nồng độ phenol sẽ không giảm vì phản ứng phá hủy phenol cần có sắt làm chất xúc tác). Khi có sắt tham gia phản ứng, phenol sẽ dần bị phá huỷ, đến một ngưỡng nào đó nếu tiếp tục thêm sắt thì hiệu quả vẫn không thay đổi. Vậy liều lượng tối ưu cho xúc tác sắt sẽ thay đổi phụ thuộc vào loại nước thải, đây chính là đặc trưng của phản ứng Fenton. Liều lượng sắt cũng có thể được biểu hiện dưới dạng liều lượng H2O2. Khoảng tiêu biểu là 1 phần Fe trên 1-10 phần H2O2.
  • Ảnh hưởng của dạng sắt: Trong  hầu hết các ứng dụng, muối Fe2+ hoặc Fe3+ đều có thể dùng xúc tác phản ứng. Phản ứng sẽ xảy ra nhanh chóng nếu H2O2 nhiều. Tuy nhiên, nếu lượng hệ chất Fenton thấp (dưới 10-25 mg/l H2O2) thì các nghiên cứu cho thấy sắt II sẽ được ưa chuộng hơn sắt III. Ngoài ra, muối Fe2+ hoặc Fe3+ đều có thể được sử dụng. Có thể tăng pH để tái tuần hoàn sắt sau phản ứng, tách riêng các bông sắt và tái axit hóa bùn sắt.
  • Ảnh hưởng của nồng độ H2O2Các gốc hydroxyl oxy hóa chất hữu cơ mà không phân biệt. Hãy lấy ví dụ về một chuỗi phản ứng:

Chất nền => A => B => C => D => CO2

A, B, C, D đại diện cho các chất trung gian bị oxy hóa. Mỗi sự chuyển đổi trong chuỗi này có tốc độ phản ứng riêng, và thỉnh thoảng chất trung gian được tạo ra là một chất ô nhiễm không mong đợi. Những chất này đòi hỏi phải đủ lượng H2O2 để đẩy phản ứng lên trên điểm đó. Điều này có thể quan sát được trước khi xử lý một nước thải hữu cơ phức tạp để giảm tính độc. Khi liều lượng H2O2 bắt đầu tăng lên, sự khử COD có thể xảy ra với ít hoặc không có sự thay đổi độc tính cho đến khi đạt một ngưỡng nhất định, nếu vượt trên ngưỡng đó thì việc thêm H2O2 sẽ nhanh chóng làm giảm độc tính nước thải.

  • Ảnh hưởng của nhiệt độ: Tốc độ phản ứng Fenton tỷ lệ thuận với sự gia tăng nhiệt độ, đặc biệt khi nhiệt độ nhỏ hơn 200°C. Tuy nhiên, khi nhiệt độ ở trên khoảng 40-500°C, hiệu suất sử dụng của H2O2 giảm bởi sự phân hủy H2O2 tăng (tạo thành oxy và nước). Trong hầu hết mọi trường hợp, các ứng dụng của phản ứng Fenton sẽ xảy ra ở nhiệt độ trong khoảng 20-400°C. Khi xử lý chất thải ô nhiễm nặng, việc thêm H2O2 phải được tiến hành tuần tự, có kiểm soát để điều chỉnh sự gia tăng nhiệt độ (đặc biệt là khi lượng H2Olớn hơn 10-20g/l). Điều hòa nhiệt độ rất quan trọng vì lý do an toàn.
  • Ảnh hưởng của pH: pH tối ưu của phản ứng Fenton nằm trong khoảng 3-6 (4-4,5: tốt nhất). Khi pH tăng cao trên 6, hiệu suất phản ứng sụt giảm do sự chuyển đổi của sắt từ ion sắt II qua dạng keo hydroxit sắt III. Dạng sắt III hydroxide có thể xúc tác phân hủy H2O2 thành oxy và nước mà không tạo ra gốc hydroxyl. Nếu pH nhỏ hơn 3, hiệu suất phản ứng cũng sụt giảm nhưng đỡ hơn.

Mặt khác, pH còn có liên quan với tiến triển của phản ứng. Ví dụ như pH nước thải ban đầu là 6. Trước tiên, pH giảm do thêm chất xúc tác là FeSO4. Tiếp đó, pH giảm nhiều hơn khi thêm H2O2, sự sụt giảm cứ tiếp tục cho đến một mức nào đó (tùy vào nồng độ xúc tác). Sự sụt giảm này được cho là do quá trình phân hủy các chất hữu cơ thành axit hữu cơ. Sự thay đổi pH thường xuyên được giám sát để đảm bảo rằng phản ứng đang phát triển theo đúng tiến độ, nếu không sự sụt giảm pH có thể khiến phản ứng bị cản trở. Những dòng nước thải đậm đặc (10g/l COD) cần được oxy hóa nhiều bậc và điều chỉnh lại nồng độ pH sau mỗi giai đoạn để ngăn ngừa pH thấp làm cản trở phản ứng.

  • Ảnh hưởng của thời gian phản ứng: Thời gian đủ để hoàn thành một phản ứng Fenton phụ thuộc vào rất nhiều yếu tố, nhưng đáng chú ý nhất là liều lượng xúc tác và mức ô nhiễm của nước thải. Đối với sự oxy hóa phenol đơn giản (<250 mg/l), phản ứng sẽ xảy ra trong khoảng 30-60 phút. Đối với các loại nước thải phức tạp hoặc đậm đặc, phản ứng có thể mất đến vài giờ. Trong trường hợp này, thực hiện phản ứng theo từng bước, với sự tham gia của cả sắt và H2O2 sẽ hiệu quả hơn, an toàn hơn là cho tất cả hóa chất vào ngay từ đầu.

Việc xác định điểm kết thúc của phản ứng cũng là một vấn đề khá khó khăn. Quá trình phân tích nước thải có thể bị cản trở bởi dư lượng H2O2. Lúc này, nó có thể bị khử bằng cách tăng pH đến 7-10, hoặc trung hòa với dung dịch bisulfite. Có thể đánh giá tiến trình phản ứng bằng cách quan sát sự thay đổi màu.

c. Ứng dụng trong ngành công nghiệp sản xuất giấy

  • Hydro peroxit đã được sử dụng từ rất lâu, chủ yếu trong sản xuất bột cơ học. Tới những năm 70 của thế kỷ 20, Oxy già 50 được phát hiện có tác dụng tách loại lignin trong quá trình sản xuất bột kraft tẩy trắng. Trong quy trình truyền thống, H2O2 50% thường được sử dụng kết hợp trong các giai đoạn trích ly kiềm (E). Tuy nhiên, trong những năm gần đây, H2O2 được nghiên cứu và sử dụng như một giai đoạn tẩy độc lập với các cải tiến về công nghệ.
  • Trong mục này đề cập đến việc nghiên cứu ứng dụng giai đoạn (PO) trong một số quy trình tẩy ECF rút gọn: DhEPQ(PO); Dh(PO)D; (AQ)h(PO)D; (DhQ)(PO)D; Dh(EOP)D… trong tẩy trắng bột giấy nấu từ nguyên liệu là gỗ keo tai tượng và bạch đàn.
  • Kết quả sơ bộ cho thấy, với mức clo hoạt tính (quy đổi) là 4,5% thì quy trình (DhQ)(PO)D cho kết quả khả quan nhất với cả hai loại nguyên liệu còn lại là keo tai tượng và bạch đàn: Độ trắng đạt trên 86%ISO, độ nhớt trên 630ml/g và tương đương với quy trình D0E0D1E1D2.
  • Bằng phương pháp quy hoạch thực nghiệm Box – Wilson, đã lựa chọn được các điều kiện tối ưu của giai đoạn (PO) (nhiệt độ tẩy, mức dùng NaOH, mức dùng H2O2) của quy trình ECF rút gọn (DhQ)(PO)D cho hai loại nguyên liệu: Bạch đàn và keo tai tượng.

d. Ứng dụng trong ngành y tế

  • H2O2 hay còn gọi là nước Oxy già 50, dùng để sát khuẩn vết thương, loại bỏ các mô chết.
  •  Nước Oxy già còn có tác dụng trị mụn trứng cá.

e. Ứng dụng trong thẩm mỹ

Hydrogen peroxide 50 giúp làm trắng răng dưới sự hướng dẫn của bác sĩ.

f. Ứng dụng trong ngành môi trường

  • Khử mùi: Oxy hóa H2S, mercaptan, amin và aldehyde. Hydrogen Peroxide có thể xử lý trực tiếp nước thải có mùi hoặc khử mùi từ dòng khí bằng cách đưa vào tháp phun ướt.
  • Khử BOD, COD: Oxy hóa các chất ô nhiễm gây ra BOD, COD. Trong một số trường hợp, những chất khó phân hủy có thể cần xúc tác.
  • Kiểm soát sự ăn mòn: Tạo ra axit ăn mòn bằng cách phân hủy dư lượng chlorine và hợp chất lưu huỳnh (thiosulfate, sulfite và sulfide) khi ngưng tụ trong thiết bị và bị oxy hóa bởi không khí.
  • Oxy hóa chất hữu cơ: Thủy phân formaldehyde, carbon disulfide (CS2), carbohydrate, photpho hữu cơ, các hợp chất nitơ, phenol, thuốc bảo vệ thực vật… và rất nhiều hợp chất khác.
  • Oxy hóa chất vô cơ: Oxy hóa cyanide, NOx, SOx, nitrites, hydrazine, carbonyl sulfide và các hợp chất lưu huỳnh (phần khử mùi).
  • Oxy hóa kim loại: Oxy hóa sắt II, arsenic, mangan, selenium… để cải thiện khả năng hấp phụ, lọc hay kết tủa trong quá trình xử lý nước và nước thải.
  • H2O2 có tác dụng để khử trùng.
  • Ngoài ra, H2Ocòn có thể dùng để khử độc, cải thiện khả năng phân hủy sinh học: Với xúc tác H2O2 phân hủy các chất hữu cơ phức tạp thành các chất hữu cơ đơn giản hơn, ít độc hơn, dễ phân hủy sinh học hơn.
  • Giải phóng các bọt khí nhỏ phân tán, nâng cao hiệu quả loại bỏ các váng dầu mỡ trong hệ thống tuyển nổi.
  • Cung cấp nguồn DO, bổ sung tại chỗ cho quá trình xử lý sinh học để cải thiện hiệu quả đốt cháy và làm giảm nhiệt độ vận hành trong lò đốt.

4. Bảo quản và lưu ý khi sử dụng Oxy già Thái Lan 50%  (Hydrogen Peroxide 50%) – H2O2 50%

a. Bảo quản oxy già Thái Lan

Bảo quản ở nơi khô ráo, thoáng mát, tránh ánh sáng mặt trời trực tiếp.

b. Lưu ý khi sử dụng oxy già Thái Lan

  • Tránh tiếp xúc với mắt, các vùng da non, da nhạy cảm.
  • Tuyệt đối không hít Oxy già 50 vì có thể khiến phổi bị tổn thương nghiêm trọng.
  • Tránh tiếp xúc nhiệt độ cao, H2O2 khi phân huỷ sẽ toả nhiệt rất lớn.
  • Hơi H2O2 có thể bị kích nổ ở 70 °C hoặc tiếp xúc với dầu mỡ, rượu, photpho,…

Main Menu